Lock 源码翻译

Lock 源码翻译

【尚未完结】
**基于JDK1.8**


版权声明

>folded
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/*
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
* Oracle 专有/机密。 使用须遵守许可条款。
*/
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
* 由Doug Lea在JCP JSR-166专家组成员的协助下撰写,并已发布到公共领域,
* 如http://creativecommons.org/publicdomain/zero/1.0/所述
*/

package java.util.concurrent.locks;
import java.util.concurrent.TimeUnit;

类说明

>folded 原
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/**
* {@code Lock} implementations provide more extensive locking
* operations than can be obtained using {@code synchronized} methods
* and statements. They allow more flexible structuring, may have
* quite different properties, and may support multiple associated
* {@link Condition} objects.
*
* <p>A lock is a tool for controlling access to a shared resource by
* multiple threads. Commonly, a lock provides exclusive access to a
* shared resource: only one thread at a time can acquire the lock and
* all access to the shared resource requires that the lock be
* acquired first. However, some locks may allow concurrent access to
* a shared resource, such as the read lock of a {@link ReadWriteLock}.
*
* <p>The use of {@code synchronized} methods or statements provides
* access to the implicit monitor lock associated with every object, but
* forces all lock acquisition and release to occur in a block-structured way:
* when multiple locks are acquired they must be released in the opposite
* order, and all locks must be released in the same lexical scope in which
* they were acquired.
*
* <p>While the scoping mechanism for {@code synchronized} methods
* and statements makes it much easier to program with monitor locks,
* and helps avoid many common programming errors involving locks,
* there are occasions where you need to work with locks in a more
* flexible way. For example, some algorithms for traversing
* concurrently accessed data structures require the use of
* &quot;hand-over-hand&quot; or &quot;chain locking&quot;: you
* acquire the lock of node A, then node B, then release A and acquire
* C, then release B and acquire D and so on. Implementations of the
* {@code Lock} interface enable the use of such techniques by
* allowing a lock to be acquired and released in different scopes,
* and allowing multiple locks to be acquired and released in any
* order.
*
* <p>With this increased flexibility comes additional
* responsibility. The absence of block-structured locking removes the
* automatic release of locks that occurs with {@code synchronized}
* methods and statements. In most cases, the following idiom
* should be used:
*
* <pre> {@code
* Lock l = ...;
* l.lock();
* try {
* // access the resource protected by this lock
* } finally {
* l.unlock();
* }}</pre>
*
* When locking and unlocking occur in different scopes, care must be
* taken to ensure that all code that is executed while the lock is
* held is protected by try-finally or try-catch to ensure that the
* lock is released when necessary.
*
* <p>{@code Lock} implementations provide additional functionality
* over the use of {@code synchronized} methods and statements by
* providing a non-blocking attempt to acquire a lock ({@link
* #tryLock()}), an attempt to acquire the lock that can be
* interrupted ({@link #lockInterruptibly}, and an attempt to acquire
* the lock that can timeout ({@link #tryLock(long, TimeUnit)}).
*
* <p>A {@code Lock} class can also provide behavior and semantics
* that is quite different from that of the implicit monitor lock,
* such as guaranteed ordering, non-reentrant usage, or deadlock
* detection. If an implementation provides such specialized semantics
* then the implementation must document those semantics.
*
* <p>Note that {@code Lock} instances are just normal objects and can
* themselves be used as the target in a {@code synchronized} statement.
* Acquiring the
* monitor lock of a {@code Lock} instance has no specified relationship
* with invoking any of the {@link #lock} methods of that instance.
* It is recommended that to avoid confusion you never use {@code Lock}
* instances in this way, except within their own implementation.
*
* <p>Except where noted, passing a {@code null} value for any
* parameter will result in a {@link NullPointerException} being
* thrown.
*
* <h3>Memory Synchronization</h3>
*
* <p>All {@code Lock} implementations <em>must</em> enforce the same
* memory synchronization semantics as provided by the built-in monitor
* lock, as described in
* <a href="https://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.4">
* The Java Language Specification (17.4 Memory Model)</a>:
* <ul>
* <li>A successful {@code lock} operation has the same memory
* synchronization effects as a successful <em>Lock</em> action.
* <li>A successful {@code unlock} operation has the same
* memory synchronization effects as a successful <em>Unlock</em> action.
* </ul>
*
* Unsuccessful locking and unlocking operations, and reentrant
* locking/unlocking operations, do not require any memory
* synchronization effects.
*
* <h3>Implementation Considerations</h3>
*
* <p>The three forms of lock acquisition (interruptible,
* non-interruptible, and timed) may differ in their performance
* characteristics, ordering guarantees, or other implementation
* qualities. Further, the ability to interrupt the <em>ongoing</em>
* acquisition of a lock may not be available in a given {@code Lock}
* class. Consequently, an implementation is not required to define
* exactly the same guarantees or semantics for all three forms of
* lock acquisition, nor is it required to support interruption of an
* ongoing lock acquisition. An implementation is required to clearly
* document the semantics and guarantees provided by each of the
* locking methods. It must also obey the interruption semantics as
* defined in this interface, to the extent that interruption of lock
* acquisition is supported: which is either totally, or only on
* method entry.
*
* <p>As interruption generally implies cancellation, and checks for
* interruption are often infrequent, an implementation can favor responding
* to an interrupt over normal method return. This is true even if it can be
* shown that the interrupt occurred after another action may have unblocked
* the thread. An implementation should document this behavior.
*
* @see ReentrantLock
* @see Condition
* @see ReadWriteLock
*
* @since 1.5
* @author Doug Lea
*/
>folded 译
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/**
* 与使用同步方法和语句相比,锁实现提供了更广泛的锁操作。
* 它们允许更灵活的结构,可以具有完全不同的属性,并且可以支持多个关联的Condition(条件)对象。
*
* 锁是一种用于控制多个线程对共享资源的访问的工具。
* 通常,锁提供对共享资源的独占访问:一次只能有一个线程可以获取该锁,而对共享资源的所有访问都需要首先获取该锁。
* 但是,某些锁可能允许并发访问共享资源,例如ReadWriteLock的读锁。
*
* 使用同步方法或语句可访问与每个对象关联的隐式监视器锁,但会强制所有锁的获取和释放以块结构方式进行:
* 当获取多个锁时,它们必须以相反的顺序释放,并且 所有锁必须在获得它们的相同词汇范围内释放。
*
* 尽管用于synchronized同步方法和语句的作用域机制使得用监视器锁的编程变得更加容易,并有助于避免许多常见的涉及锁的编程错误,
* 但在某些情况下,您需要以更灵活的方式使用锁。
* 例如,某些用于遍历并发访问的数据结构的算法需要使用“移交”或“链锁”:您获取节点A的锁,然后获取节点B的锁,然后释放A并获取C,然后释放B 并获得D等。
* Lock接口的实现通过允许在不同范围内获取和释放锁,并允许以任意顺序获取和释放多个锁,从而启用了此类技术。
*
* 灵活性的提高带来了额外的责任。缺少块结构锁定将消除同步方法和语句发生的自动锁定释放。
* 在大多数情况下,应使用以下惯用法:
*
* Lock l = ...;
* l.lock();
* try {
* // access the resource protected by this lock
* } finally {
* l.unlock();
* }
*
* 当锁定和解锁发生在不同的范围内时,必须小心以确保通过try-finally或try-catch保护持有锁时执行的所有代码,
* 以确保在必要时释放锁。
*
* Lock实现提供了比synchronized同步方法和语句之外更多的功能。它可以非阻塞的尝试去获取锁(tryLock()),可以获取可被中断的锁lockInterruptibly,
* 包括可以设置超时时间的锁(tryLock(long,TimeUnit))。
*
* Lock类还可以提供与隐式监视器锁定完全不同的行为和语义,例如保证顺序,不可重用或死锁检测。
* 如果实现提供了这种特殊的语义,则实现必须记录这些语义。
*
* 请注意,Lock实例只是普通对象,它们本身可以用作同步语句中的目标。获取Lock实例的监视器锁与调用该实例的任何锁方法没有指定的关系。
* 建议避免混淆,除非在自己的实现中使用,否则不要以这种方式使用Lock实例。
*
* 除非另有说明,否则为任何参数传递null值都将引发NullPointerException。
*
* 内存同步
*
* 所有锁实现必须强制执行与内置监视器锁所提供的相同的内存同步语义,如Java语言规范(17.4内存模型)中所述:
* *
* *
*
* 不成功的锁定和解锁操作以及可重入的锁定/解锁操作不需要任何内存同步效果。
*
* 实现注意事项
*
* 锁获取的三种形式(可中断,不可中断和定时)可能在性能特征,订购保证或其他实现质量上有所不同。
* 此外,在给定的Lock类中,可能无法提供中断正在进行的锁定的功能。因此,不需要为所有三种形式的锁获取定义完全相同的保证或语义的实现,
* 也不需要支持正在进行的锁获取的中断。需要一个实现来清楚地记录每个锁定方法提供的语义和保证。
* 在支持锁获取中断的范围内,它还必须服从此接口中定义的中断语义:全部或仅在方法输入时才这样做。
*
* @see ReentrantLock
* @see Condition
* @see ReadWriteLock
*
* @since 1.5
* @author Doug Lea
*/

类主体

接口方法
>folded lock 获取锁
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public interface Lock {

/**
* Acquires the lock.
* 获取锁
*
* <p>If the lock is not available then the current thread becomes
* disabled for thread scheduling purposes and lies dormant until the
* lock has been acquired.
* 如果该锁不可用,则出于线程调度目的,当前线程将被禁用,并处于休眠状态,直到获得该锁为止。
*
* <p><b>Implementation Considerations</b>
* 实现注意事项
*
* <p>A {@code Lock} implementation may be able to detect erroneous use
* of the lock, such as an invocation that would cause deadlock, and
* may throw an (unchecked) exception in such circumstances. The
* circumstances and the exception type must be documented by that
* {@code Lock} implementation.
* 锁实现可能能够检测到锁的错误使用,例如可能导致死锁的调用,并且在这种情况下可能引发(未经检查的)异常。
* 该Lock实现必须记录情况和异常类型。
*/
void lock();
>folded lockInterruptibly 获取锁,除非当前线程被中断
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/**
* Acquires the lock unless the current thread is
* {@linkplain Thread#interrupt interrupted}.
* 获取锁,除非当前线程被中断。
*
* <p>Acquires the lock if it is available and returns immediately.
* 获取锁(如果有)并立即返回。
*
* <p>If the lock is not available then the current thread becomes
* disabled for thread scheduling purposes and lies dormant until
* one of two things happens:
*
* <ul>
* <li>The lock is acquired by the current thread; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts} the
* current thread, and interruption of lock acquisition is supported.
* </ul>
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while acquiring the
* lock, and interruption of lock acquisition is supported,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
*
* <p><b>Implementation Considerations</b>
*
* <p>The ability to interrupt a lock acquisition in some
* implementations may not be possible, and if possible may be an
* expensive operation. The programmer should be aware that this
* may be the case. An implementation should document when this is
* the case.
*
* <p>An implementation can favor responding to an interrupt over
* normal method return.
*
* <p>A {@code Lock} implementation may be able to detect
* erroneous use of the lock, such as an invocation that would
* cause deadlock, and may throw an (unchecked) exception in such
* circumstances. The circumstances and the exception type must
* be documented by that {@code Lock} implementation.
*
* @throws InterruptedException if the current thread is
* interrupted while acquiring the lock (and interruption
* of lock acquisition is supported)
*/
void lockInterruptibly() throws InterruptedException;
>folded DEFAULT_LOAD_FACTOR 默认负载因子
1
2
3
4
5
/**
* The load factor used when none specified in constructor.
* 在构造函数中未指定时使用的负载系数。默认0.75
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
>folded TREEIFY_THRESHOLD 树化阈值
1
2
3
4
5
6
7
8
9
10
11
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
* 选择使用树结构而不是列表结构的计数阈值。桶里元素添加到至少具有这么多时,桶的结构会转换为树结构。
* 该值必须大于2,并且至少是8才能与树删除中的假设(即收缩时转换回原始列表结构的桶)相啮合
*/
static final int TREEIFY_THRESHOLD = 8;
>folded UNTREEIFY_THRESHOLD 去树化阈值
1
2
3
4
5
6
7
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
* 在resize操作期间用于去树化(拆分)箱的计数阈值。应小于TREEIFY_THRESHOLD(树化阈值),并且最大为6以与删除时的收缩检测相啮合。
*/
static final int UNTREEIFY_THRESHOLD = 6;
>folded MIN_TREEIFY_CAPACITY 树结构存在时最小table表容量
1
2
3
4
5
6
7
8
9
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
* 树结构存在的最小表容量。(否则,如果桶中的节点过多,则将调整表的大小 - 增加table数组长度。)
* 应至少为 4 * TREEIFY_THRESHOLD,以避免调整大小和树化阈值之间发生冲突。
*/
static final int MIN_TREEIFY_CAPACITY = 64;
静态内部类
>folded Node 普通节点
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/**
* Basic hash bin node, used for most entries. (See below for
* TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
* 基本哈希箱节点,用于大多数条目。(有关TreeNode子类的信息,请参见下文;有关Entry子类的信息,请参见LinkedHashMap。)
* 节点对象包含四个属性:key值的hash值、key值、映射的值value、下一个节点对象
*/
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;

Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}

public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }

public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}

public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}

public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
静态工具方法
>folded hash 计算hash值
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
/* ---------------- Static utilities -------------- */

/**
* Computes key.hashCode() and spreads (XORs) higher bits of hash
* to lower. Because the table uses power-of-two masking, sets of
* hashes that vary only in bits above the current mask will
* always collide. (Among known examples are sets of Float keys
* holding consecutive whole numbers in small tables.) So we
* apply a transform that spreads the impact of higher bits
* downward. There is a tradeoff between speed, utility, and
* quality of bit-spreading. Because many common sets of hashes
* are already reasonably distributed (so don't benefit from
* spreading), and because we use trees to handle large sets of
* collisions in bins, we just XOR some shifted bits in the
* cheapest possible way to reduce systematic lossage, as well as
* to incorporate impact of the highest bits that would otherwise
* never be used in index calculations because of table bounds.
* 计算key.hashCode()并将哈希的较高位特征(XOR)扩展到较低位中。
* 由于该表使用2的幂次掩码,因此仅在当前掩码上方的位中发生变化的哈希集将始终发生冲突。
* (众所周知的例子是在小表中包含连续整数的Float键集。)因此,我们应用了一种变换,将向下扩展较高位的影响。
* 在速度,实用性和位扩展质量之间需要权衡。由于许多常见的哈希集已经合理分布(因此无法从扩展中受益),并且由于我们使用树来处理容器中的大量冲突,
* 因此我们仅以最便宜的方式对一些移位后的位进行XOR(异或运算),以减少系统损失,以及合并较高位的影响,否则由于表范围的限制,这些位将永远不会在索引计算中使用。
*
* 意思就是将高位的二进制特征合并到低位特征中(这么做的原因是后面定位数组下标使用的方法是:
* hash & (tab.length-1),这个二进制运算使得hash高位被屏蔽没有起作用,所以为了保留高位的特征和影响而进行了扩展操作,
* 保留高位特征可以减小hash碰撞)。
* 示例1:高低位异或运算
* h=key.hashcode() 1111 1101 1101 1111 0101 1101 0010 1001
* ^
* h >>> 16 0000 0000 0000 0000 1111 1101 1101 1111
* ————————————————————————————————————————————————————————
* h ^ (h >>> 16) 1111 1101 1101 1111 1010 0000 1111 0110
*
* 示例2:定位元素所处的数组位置(假设此时数组长度=16)
* hash 1111 1101 1101 1111 1010 0000 1111 0110
* &
* 16-1 0000 0000 0000 0000 0000 0000 0000 1111
* ————————————————————————————————————————————————————————
* hash & (16-1) 0000 0000 0000 0000 0000 0000 0000 0110
*/
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
>folded comparableClassFor
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/**
* Returns x's Class if it is of the form "class C implements
* Comparable<C>", else null.
* 返回 x 的 class 如果 x instanceof Comparable
* 否则返回 null
*/
static Class<?> comparableClassFor(Object x) {
if (x instanceof Comparable) {
Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
if ((c = x.getClass()) == String.class) // bypass checks
return c;
if ((ts = c.getGenericInterfaces()) != null) {
for (int i = 0; i < ts.length; ++i) {
if (((t = ts[i]) instanceof ParameterizedType) &&
((p = (ParameterizedType)t).getRawType() ==
Comparable.class) &&
(as = p.getActualTypeArguments()) != null &&
as.length == 1 && as[0] == c) // type arg is c
return c;
}
}
}
return null;
}
>folded compareComparables
1
2
3
4
5
6
7
8
9
/**
* Returns k.compareTo(x) if x matches kc (k's screened comparable
* class), else 0.
*/
@SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
static int compareComparables(Class<?> kc, Object k, Object x) {
return (x == null || x.getClass() != kc ? 0 :
((Comparable)k).compareTo(x));
}
>folded tableSizeFor 生成数组长度值
1
2
3
4
5
6
7
8
9
10
11
12
13
/**
* Returns a power of two size for the given target capacity.
* 对于给定的目标容量,返回一个2的次幂的值
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
成员属性
>folded table 数组
1
2
3
4
5
6
7
8
9
10
11
12
/* ---------------- Fields -------------- */

/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
* 该table在首次使用时初始化,并根据需要调整大小。
* 分配时,长度始终是2的幂。(在某些操作中,我们还允许长度为零,以允许使用当前不需要的引导机制。)
* transient修饰,该属性值不会被序列化
*/
transient Node<K,V>[] table;
>folded entrySet
1
2
3
4
5
6
/**
* Holds cached entrySet(). Note that AbstractMap fields are used
* for keySet() and values().
* 保存缓存的entrySet() 注意,AbstractMap字段用于keySet()和values()。
*/
transient Set<Map.Entry<K,V>> entrySet;
>folded size
1
2
3
4
5
/**
* The number of key-value mappings contained in this map.
* 此map中包含的键-值映射数。
*/
transient int size;
>folded modCount HashMap结构修改次数
1
2
3
4
5
6
7
8
9
10
/**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the HashMap fail-fast. (See ConcurrentModificationException).
* 对该HashMap进行结构修改的次数,结构修改是指更改HashMap中映射次数或以其他方式修改其内部结构(例如,重新哈希)的修改。
* 此字段用于使HashMap的Collection-view上的迭代器快速失败。 (请参见ConcurrentModificationException)。
*/
transient int modCount;
>folded threshold
1
2
3
4
5
6
7
8
9
10
/**
* The next size value at which to resize (capacity * load factor).
* resize时下一个大小的值(容量 * 负载因子)
* @serial
*/
// (The javadoc description is true upon serialization.
// Additionally, if the table array has not been allocated, this
// field holds the initial array capacity, or zero signifying
// DEFAULT_INITIAL_CAPACITY.)
int threshold;
>folded loadFactor 负载因子
1
2
3
4
5
6
/**
* The load factor for the hash table.
* 哈希表的负载因子
* @serial
*/
final float loadFactor;
成员方法
>folded HashMap 构造方法1(初始容量,负载因子)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/* ---------------- Public operations -------------- */

/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
>folded HashMap 构造方法2(初始容量)
1
2
3
4
5
6
7
8
9
10
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
>folded HashMap 构造方法3
1
2
3
4
5
6
7
8
/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
* 默认的初始容量(16)和默认的负载因子(0.75)
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
>folded HashMap 构造方法4(Map类型对象)
1
2
3
4
5
6
7
8
9
10
11
12
13
/**
* Constructs a new <tt>HashMap</tt> with the same mappings as the
* specified <tt>Map</tt>. The <tt>HashMap</tt> is created with
* default load factor (0.75) and an initial capacity sufficient to
* hold the mappings in the specified <tt>Map</tt>.
*
* @param m the map whose mappings are to be placed in this map
* @throws NullPointerException if the specified map is null
*/
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
>folded putMapEntries 将传入的map的元素全部put进去
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
* Implements Map.putAll and Map constructor
* 实现了 Map.putAll 和 Map的构造器
*
* @param m the map
* @param evict false when initially constructing this map, else
* true (relayed to method afterNodeInsertion).
*/
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
if (table == null) { // pre-size
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
}
else if (s > threshold)
resize();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
>folded size 返回键-值映射数量
1
2
3
4
5
6
7
8
/**
* Returns the number of key-value mappings in this map.
*
* @return the number of key-value mappings in this map
*/
public int size() {
return size;
}
>folded isEmpty 返回映射数是否为0
1
2
3
4
5
6
7
8
/**
* Returns <tt>true</tt> if this map contains no key-value mappings.
*
* @return <tt>true</tt> if this map contains no key-value mappings
*/
public boolean isEmpty() {
return size == 0;
}
>folded get 根据key获取value
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(Object, Object)
*/
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
>folded getNode 根据hash值和key获取Node节点(Node/TreeNode)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
* Implements Map.get and related methods
*
* @param hash hash for key
* @param key the key
* @return the node, or null if none
*/
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
>folded containsKey 返回map是否包含此键
1
2
3
4
5
6
7
8
9
10
11
/**
* Returns <tt>true</tt> if this map contains a mapping for the
* specified key.
*
* @param key The key whose presence in this map is to be tested
* @return <tt>true</tt> if this map contains a mapping for the specified
* key.
*/
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}
>folded put 放元素(key,value)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
* 将指定值与该映射中的指定键相关联。如果该映射先前包含该键的映射,则替换旧值
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
>folded putVal 具体put方法的实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
>folded resize 重建table表。初始化或2倍扩容
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
>folded treeifyBin 树化给定hash值对应的桶所有元素
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
* Replaces all linked nodes in bin at index for given hash unless
* table is too small, in which case resizes instead.
* 树化给定hash值对应的桶所有元素,除非table表太小 - tab.length < MIN_TREEIFY_CAPACITY。
* table表太小的情况就进行一遍resize表重建。
*/
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
>folded putAll 将传入的map的元素全部put进去
1
2
3
4
5
6
7
8
9
10
11
/**
* Copies all of the mappings from the specified map to this map.
* These mappings will replace any mappings that this map had for
* any of the keys currently in the specified map.
*
* @param m mappings to be stored in this map
* @throws NullPointerException if the specified map is null
*/
public void putAll(Map<? extends K, ? extends V> m) {
putMapEntries(m, true);
}
>folded remove 删除指定键的映射
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/**
* Removes the mapping for the specified key from this map if present.
* 如果存在,则从此map中删除指定键的映射。
* @param key key whose mapping is to be removed from the map
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
>folded removeNode 删除指定键的节点
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/**
* Implements Map.remove and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to match if matchValue, else ignored
* @param matchValue if true only remove if value is equal
* @param movable if false do not move other nodes while removing
* @return the node, or null if none
*/
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
>folded clear 删除全部键值映射
1
2
3
4
5
6
7
8
9
10
11
12
13
/**
* Removes all of the mappings from this map.
* The map will be empty after this call returns.
*/
public void clear() {
Node<K,V>[] tab;
modCount++;
if ((tab = table) != null && size > 0) {
size = 0;
for (int i = 0; i < tab.length; ++i)
tab[i] = null;
}
}
>folded containsValue 判断是否包含此值
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/**
* Returns <tt>true</tt> if this map maps one or more keys to the
* specified value.
*
* @param value value whose presence in this map is to be tested
* @return <tt>true</tt> if this map maps one or more keys to the
* specified value
*/
public boolean containsValue(Object value) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
if ((v = e.value) == value ||
(value != null && value.equals(v)))
return true;
}
}
}
return false;
}
>folded keySet 返回map包含的所有key值set集合
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own <tt>remove</tt> operation), the results of
* the iteration are undefined. The set supports element removal,
* which removes the corresponding mapping from the map, via the
* <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
* <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
* operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
* operations.
*
* @return a set view of the keys contained in this map
*/
public Set<K> keySet() {
Set<K> ks;
return (ks = keySet) == null ? (keySet = new KeySet()) : ks;
}
KeySet内部类
>folded
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
final class KeySet extends AbstractSet<K> {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator<K> iterator() { return new KeyIterator(); }
public final boolean contains(Object o) { return containsKey(o); }
public final boolean remove(Object key) {
return removeNode(hash(key), key, null, false, true) != null;
}
public final Spliterator<K> spliterator() {
return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super K> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e.key);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}
>folded values 返回map中所有value的集合
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/**
* Returns a {@link Collection} view of the values contained in this map.
* The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa. If the map is
* modified while an iteration over the collection is in progress
* (except through the iterator's own <tt>remove</tt> operation),
* the results of the iteration are undefined. The collection
* supports element removal, which removes the corresponding
* mapping from the map, via the <tt>Iterator.remove</tt>,
* <tt>Collection.remove</tt>, <tt>removeAll</tt>,
* <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
* support the <tt>add</tt> or <tt>addAll</tt> operations.
*
* @return a view of the values contained in this map
*/
public Collection<V> values() {
Collection<V> vs;
return (vs = values) == null ? (values = new Values()) : vs;
}
Values内部类
>folded
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
final class Values extends AbstractCollection<V> {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator<V> iterator() { return new ValueIterator(); }
public final boolean contains(Object o) { return containsValue(o); }
public final Spliterator<V> spliterator() {
return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super V> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e.value);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}
>folded entrySet 返回map包含的键值映射集合
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/**
* Returns a {@link Set} view of the mappings contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own <tt>remove</tt> operation, or through the
* <tt>setValue</tt> operation on a map entry returned by the
* iterator) the results of the iteration are undefined. The set
* supports element removal, which removes the corresponding
* mapping from the map, via the <tt>Iterator.remove</tt>,
* <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
* <tt>clear</tt> operations. It does not support the
* <tt>add</tt> or <tt>addAll</tt> operations.
*
* @return a set view of the mappings contained in this map
*/
public Set<Map.Entry<K,V>> entrySet() {
Set<Map.Entry<K,V>> es;
return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
}
EntrySet内部类
>folded
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator();
}
public final boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
Object key = e.getKey();
Node<K,V> candidate = getNode(hash(key), key);
return candidate != null && candidate.equals(e);
}
public final boolean remove(Object o) {
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
Object key = e.getKey();
Object value = e.getValue();
return removeNode(hash(key), key, value, true, true) != null;
}
return false;
}
public final Spliterator<Map.Entry<K,V>> spliterator() {
return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}
重写JDK8 Map扩展方法
>folded
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// Overrides of JDK8 Map extension methods

@Override
public V getOrDefault(Object key, V defaultValue) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
}

@Override
public V putIfAbsent(K key, V value) {
return putVal(hash(key), key, value, true, true);
}

@Override
public boolean remove(Object key, Object value) {
return removeNode(hash(key), key, value, true, true) != null;
}

@Override
public boolean replace(K key, V oldValue, V newValue) {
Node<K,V> e; V v;
if ((e = getNode(hash(key), key)) != null &&
((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
e.value = newValue;
afterNodeAccess(e);
return true;
}
return false;
}

@Override
public V replace(K key, V value) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) != null) {
V oldValue = e.value;
e.value = value;
afterNodeAccess(e);
return oldValue;
}
return null;
}

@Override
public V computeIfAbsent(K key,
Function<? super K, ? extends V> mappingFunction) {
if (mappingFunction == null)
throw new NullPointerException();
int hash = hash(key);
Node<K,V>[] tab; Node<K,V> first; int n, i;
int binCount = 0;
TreeNode<K,V> t = null;
Node<K,V> old = null;
if (size > threshold || (tab = table) == null ||
(n = tab.length) == 0)
n = (tab = resize()).length;
if ((first = tab[i = (n - 1) & hash]) != null) {
if (first instanceof TreeNode)
old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
else {
Node<K,V> e = first; K k;
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
old = e;
break;
}
++binCount;
} while ((e = e.next) != null);
}
V oldValue;
if (old != null && (oldValue = old.value) != null) {
afterNodeAccess(old);
return oldValue;
}
}
V v = mappingFunction.apply(key);
if (v == null) {
return null;
} else if (old != null) {
old.value = v;
afterNodeAccess(old);
return v;
}
else if (t != null)
t.putTreeVal(this, tab, hash, key, v);
else {
tab[i] = newNode(hash, key, v, first);
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
}
++modCount;
++size;
afterNodeInsertion(true);
return v;
}

public V computeIfPresent(K key,
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
if (remappingFunction == null)
throw new NullPointerException();
Node<K,V> e; V oldValue;
int hash = hash(key);
if ((e = getNode(hash, key)) != null &&
(oldValue = e.value) != null) {
V v = remappingFunction.apply(key, oldValue);
if (v != null) {
e.value = v;
afterNodeAccess(e);
return v;
}
else
removeNode(hash, key, null, false, true);
}
return null;
}

@Override
public V compute(K key,
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
if (remappingFunction == null)
throw new NullPointerException();
int hash = hash(key);
Node<K,V>[] tab; Node<K,V> first; int n, i;
int binCount = 0;
TreeNode<K,V> t = null;
Node<K,V> old = null;
if (size > threshold || (tab = table) == null ||
(n = tab.length) == 0)
n = (tab = resize()).length;
if ((first = tab[i = (n - 1) & hash]) != null) {
if (first instanceof TreeNode)
old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
else {
Node<K,V> e = first; K k;
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
old = e;
break;
}
++binCount;
} while ((e = e.next) != null);
}
}
V oldValue = (old == null) ? null : old.value;
V v = remappingFunction.apply(key, oldValue);
if (old != null) {
if (v != null) {
old.value = v;
afterNodeAccess(old);
}
else
removeNode(hash, key, null, false, true);
}
else if (v != null) {
if (t != null)
t.putTreeVal(this, tab, hash, key, v);
else {
tab[i] = newNode(hash, key, v, first);
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
}
++modCount;
++size;
afterNodeInsertion(true);
}
return v;
}

@Override
public V merge(K key, V value,
BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
if (value == null)
throw new NullPointerException();
if (remappingFunction == null)
throw new NullPointerException();
int hash = hash(key);
Node<K,V>[] tab; Node<K,V> first; int n, i;
int binCount = 0;
TreeNode<K,V> t = null;
Node<K,V> old = null;
if (size > threshold || (tab = table) == null ||
(n = tab.length) == 0)
n = (tab = resize()).length;
if ((first = tab[i = (n - 1) & hash]) != null) {
if (first instanceof TreeNode)
old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
else {
Node<K,V> e = first; K k;
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
old = e;
break;
}
++binCount;
} while ((e = e.next) != null);
}
}
if (old != null) {
V v;
if (old.value != null)
v = remappingFunction.apply(old.value, value);
else
v = value;
if (v != null) {
old.value = v;
afterNodeAccess(old);
}
else
removeNode(hash, key, null, false, true);
return v;
}
if (value != null) {
if (t != null)
t.putTreeVal(this, tab, hash, key, value);
else {
tab[i] = newNode(hash, key, value, first);
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
}
++modCount;
++size;
afterNodeInsertion(true);
}
return value;
}

@Override
public void forEach(BiConsumer<? super K, ? super V> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e.key, e.value);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}

@Override
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
Node<K,V>[] tab;
if (function == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
e.value = function.apply(e.key, e.value);
}
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
clone 和 序列化方法
>folded clone
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/* ------------------------------------------------------------ */
// Cloning and serialization

/**
* Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
* values themselves are not cloned.
* 返回此HashMap实例的浅副本:键和值本身不会被克隆。
*
* @return a shallow copy of this map
*/
@SuppressWarnings("unchecked")
@Override
public Object clone() {
HashMap<K,V> result;
try {
result = (HashMap<K,V>)super.clone();
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
result.reinitialize();
result.putMapEntries(this, false);
return result;
}
>folded serialization 用于序列化的一些方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// These methods are also used when serializing HashSets
final float loadFactor() { return loadFactor; }

final int capacity() {
return (table != null) ? table.length :
(threshold > 0) ? threshold :
DEFAULT_INITIAL_CAPACITY;
}

/**
* Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
* serialize it).
* 将HashMap实例的状态保存到流中(即序列化它)。
*
* @serialData The <i>capacity</i> of the HashMap (the length of the
* bucket array) is emitted (int), followed by the
* <i>size</i> (an int, the number of key-value
* mappings), followed by the key (Object) and value (Object)
* for each key-value mapping. The key-value mappings are
* emitted in no particular order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws IOException {
int buckets = capacity();
// Write out the threshold, loadfactor, and any hidden stuff
s.defaultWriteObject();
s.writeInt(buckets);
s.writeInt(size);
internalWriteEntries(s);
}

/**
* Reconstitute the {@code HashMap} instance from a stream (i.e.,
* deserialize it).
* 从流中重建HashMap实例(即反序列化它)。
*/
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException {
// Read in the threshold (ignored), loadfactor, and any hidden stuff
s.defaultReadObject();
reinitialize();
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new InvalidObjectException("Illegal load factor: " +
loadFactor);
s.readInt(); // Read and ignore number of buckets
int mappings = s.readInt(); // Read number of mappings (size)
if (mappings < 0)
throw new InvalidObjectException("Illegal mappings count: " +
mappings);
else if (mappings > 0) { // (if zero, use defaults)
// Size the table using given load factor only if within
// range of 0.25...4.0
float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
float fc = (float)mappings / lf + 1.0f;
int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
DEFAULT_INITIAL_CAPACITY :
(fc >= MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY :
tableSizeFor((int)fc));
float ft = (float)cap * lf;
threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
(int)ft : Integer.MAX_VALUE);
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
table = tab;

// Read the keys and values, and put the mappings in the HashMap
for (int i = 0; i < mappings; i++) {
@SuppressWarnings("unchecked")
K key = (K) s.readObject();
@SuppressWarnings("unchecked")
V value = (V) s.readObject();
putVal(hash(key), key, value, false, false);
}
}
}
iterators 迭代方法
>folded HashIterator hash迭代器抽象内部类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/* ------------------------------------------------------------ */
// iterators

abstract class HashIterator {
Node<K,V> next; // next entry to return
Node<K,V> current; // current entry
int expectedModCount; // for fast-fail
int index; // current slot

HashIterator() {
expectedModCount = modCount;
Node<K,V>[] t = table;
current = next = null;
index = 0;
if (t != null && size > 0) { // advance to first entry
do {} while (index < t.length && (next = t[index++]) == null);
}
}

public final boolean hasNext() {
return next != null;
}

final Node<K,V> nextNode() {
Node<K,V>[] t;
Node<K,V> e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
if ((next = (current = e).next) == null && (t = table) != null) {
do {} while (index < t.length && (next = t[index++]) == null);
}
return e;
}

public final void remove() {
Node<K,V> p = current;
if (p == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = null;
K key = p.key;
removeNode(hash(key), key, null, false, false);
expectedModCount = modCount;
}
}
>folded HashIterator的三个子类:key、value、映射迭代器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
final class KeyIterator extends HashIterator
implements Iterator<K> {
public final K next() { return nextNode().key; }
}

final class ValueIterator extends HashIterator
implements Iterator<V> {
public final V next() { return nextNode().value; }
}

final class EntryIterator extends HashIterator
implements Iterator<Map.Entry<K,V>> {
public final Map.Entry<K,V> next() { return nextNode(); }
}
spliterators 分离器
>folded HashMapSpliterator分离器静态内部类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/* ------------------------------------------------------------ */
// spliterators

static class HashMapSpliterator<K,V> {
final HashMap<K,V> map;
Node<K,V> current; // current node | 当前节点
int index; // current index, modified on advance/split | 当前索引,在 advance/split 时修改
int fence; // one past last index | 最后一个索引
int est; // size estimate | 预估大小
int expectedModCount; // for comodification checks | 预期修改数,用于修改检查

HashMapSpliterator(HashMap<K,V> m, int origin,
int fence, int est,
int expectedModCount) {
this.map = m;
this.index = origin;
this.fence = fence;
this.est = est;
this.expectedModCount = expectedModCount;
}

final int getFence() { // initialize fence and size on first use | 第一次使用时初始化fence和est、expectedModCount
int hi;
if ((hi = fence) < 0) {
HashMap<K,V> m = map;
est = m.size;
expectedModCount = m.modCount;
Node<K,V>[] tab = m.table;
hi = fence = (tab == null) ? 0 : tab.length;
}
return hi;
}

public final long estimateSize() {
getFence(); // force init
return (long) est;
}
}
>folded KeySpliterator分离器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
static final class KeySpliterator<K,V>
extends HashMapSpliterator<K,V>
implements Spliterator<K> {
KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}

public KeySpliterator<K,V> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid || current != null) ? null :
new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}

public void forEachRemaining(Consumer<? super K> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
HashMap<K,V> m = map;
Node<K,V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = (tab == null) ? 0 : tab.length;
}
else
mc = expectedModCount;
if (tab != null && tab.length >= hi &&
(i = index) >= 0 && (i < (index = hi) || current != null)) {
Node<K,V> p = current;
current = null;
do {
if (p == null)
p = tab[i++];
else {
action.accept(p.key);
p = p.next;
}
} while (p != null || i < hi);
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
}

public boolean tryAdvance(Consumer<? super K> action) {
int hi;
if (action == null)
throw new NullPointerException();
Node<K,V>[] tab = map.table;
if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
K k = current.key;
current = current.next;
action.accept(k);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
return false;
}

public int characteristics() {
return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
Spliterator.DISTINCT;
}
}
>folded ValueSpliterator分离器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
static final class ValueSpliterator<K,V>
extends HashMapSpliterator<K,V>
implements Spliterator<V> {
ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}

public ValueSpliterator<K,V> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid || current != null) ? null :
new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}

public void forEachRemaining(Consumer<? super V> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
HashMap<K,V> m = map;
Node<K,V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = (tab == null) ? 0 : tab.length;
}
else
mc = expectedModCount;
if (tab != null && tab.length >= hi &&
(i = index) >= 0 && (i < (index = hi) || current != null)) {
Node<K,V> p = current;
current = null;
do {
if (p == null)
p = tab[i++];
else {
action.accept(p.value);
p = p.next;
}
} while (p != null || i < hi);
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
}

public boolean tryAdvance(Consumer<? super V> action) {
int hi;
if (action == null)
throw new NullPointerException();
Node<K,V>[] tab = map.table;
if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
V v = current.value;
current = current.next;
action.accept(v);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
return false;
}

public int characteristics() {
return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
}
}
>folded EntrySpliterator分离器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
static final class EntrySpliterator<K,V>
extends HashMapSpliterator<K,V>
implements Spliterator<Map.Entry<K,V>> {
EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}

public EntrySpliterator<K,V> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid || current != null) ? null :
new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}

public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
HashMap<K,V> m = map;
Node<K,V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = (tab == null) ? 0 : tab.length;
}
else
mc = expectedModCount;
if (tab != null && tab.length >= hi &&
(i = index) >= 0 && (i < (index = hi) || current != null)) {
Node<K,V> p = current;
current = null;
do {
if (p == null)
p = tab[i++];
else {
action.accept(p);
p = p.next;
}
} while (p != null || i < hi);
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
}

public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
int hi;
if (action == null)
throw new NullPointerException();
Node<K,V>[] tab = map.table;
if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
Node<K,V> e = current;
current = current.next;
action.accept(e);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
return false;
}

public int characteristics() {
return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
Spliterator.DISTINCT;
}
}
LinkedHashMap support LinkedHashMap支持
>folded
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/* ------------------------------------------------------------ */
// LinkedHashMap support


/*
* The following package-protected methods are designed to be
* overridden by LinkedHashMap, but not by any other subclass.
* Nearly all other internal methods are also package-protected
* but are declared final, so can be used by LinkedHashMap, view
* classes, and HashSet.
* 下面的受程序包保护的方法旨在被LinkedHashMap覆盖,但不能被任何其他子类覆盖。
* 几乎所有其他内部方法也受程序包保护,但都声明为final,因此LinkedHashMap,视图类和HashSet可以使用它。
*/

// Create a regular (non-tree) node | 创建一个常规(非树)节点
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
return new Node<>(hash, key, value, next);
}

// For conversion from TreeNodes to plain nodes | 用于从TreeNodes转换为常规节点
Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
return new Node<>(p.hash, p.key, p.value, next);
}

// Create a tree bin node | 创建一个树节点
TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
return new TreeNode<>(hash, key, value, next);
}

// For treeifyBin | 转化为树节点
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
return new TreeNode<>(p.hash, p.key, p.value, next);
}

/**
* Reset to initial default state. Called by clone and readObject.
* 重置为初始默认状态。 由clone和readObject调用
*/
void reinitialize() {
table = null;
entrySet = null;
keySet = null;
values = null;
modCount = 0;
threshold = 0;
size = 0;
}

// Callbacks to allow LinkedHashMap post-actions | 允许LinkedHashMap后处理的回调
void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }
void afterNodeRemoval(Node<K,V> p) { }

// Called only from writeObject, to ensure compatible ordering. | 仅从writeObject调用,以确保兼容的顺序。
void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
Node<K,V>[] tab;
if (size > 0 && (tab = table) != null) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
s.writeObject(e.key);
s.writeObject(e.value);
}
}
}
}
Tree bins 树箱
>folded
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/* ------------------------------------------------------------ */
// Tree bins

/**
* Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
* extends Node) so can be used as extension of either regular or
* linked node.
* 树箱的Entry。 继承LinkedHashMap.Entry(进而扩展Node),因此可以用作常规节点或链接节点的扩展。
*/
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}

/**
* Returns root of tree containing this node.
* 返回包含此节点的树的根节点
*/
final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
}

/**
* Ensures that the given root is the first node of its bin.
* 确保给定的根是其bin的第一个节点。
*/
static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
int n;
if (root != null && tab != null && (n = tab.length) > 0) {
int index = (n - 1) & root.hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
if (root != first) {
Node<K,V> rn;
tab[index] = root;
TreeNode<K,V> rp = root.prev;
if ((rn = root.next) != null)
((TreeNode<K,V>)rn).prev = rp;
if (rp != null)
rp.next = rn;
if (first != null)
first.prev = root;
root.next = first;
root.prev = null;
}
assert checkInvariants(root);
}
}

/**
* Finds the node starting at root p with the given hash and key.
* The kc argument caches comparableClassFor(key) upon first use
* comparing keys.
* 根据给定的hash和key 从树根节点p开始查找该节点。
* kc参数在首次比较key时会缓存comparableClassFor(key)
*/
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
TreeNode<K,V> p = this;
do {
int ph, dir; K pk;
TreeNode<K,V> pl = p.left, pr = p.right, q;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.find(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
return null;
}

/**
* Calls find for root node.
* 调用查找根节点。
*/
final TreeNode<K,V> getTreeNode(int h, Object k) {
return ((parent != null) ? root() : this).find(h, k, null);
}

/**
* Tie-breaking utility for ordering insertions when equal
* hashCodes and non-comparable. We don't require a total
* order, just a consistent insertion rule to maintain
* equivalence across rebalancings. Tie-breaking further than
* necessary simplifies testing a bit.
* Tie-breaking程序,用于在hashCodes相等且不可比较时对插入进行排序。
* 我们不需要总的排序,只需一个一致的插入规则即可在重新平衡期间保持等效。
* Tie-breaking比简化测试更有必要。
*/
static int tieBreakOrder(Object a, Object b) {
int d;
if (a == null || b == null ||
(d = a.getClass().getName().
compareTo(b.getClass().getName())) == 0)
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
-1 : 1);
return d;
}

/**
* Forms tree of the nodes linked from this node.
* 从该节点链接的节点的表单树。- 树化节点:非树节点 -> 树节点
* @return root of tree
*/
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
for (TreeNode<K,V> x = this, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (root == null) {
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = root;;) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);

TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
root = balanceInsertion(root, x);
break;
}
}
}
}
moveRootToFront(tab, root);
}

/**
* Returns a list of non-TreeNodes replacing those linked from
* this node.
* 返回非TreeNode列表,该列表替换从该节点链接的非TreeNode。- 去树化:树节点 -> 非树节点
*/
final Node<K,V> untreeify(HashMap<K,V> map) {
Node<K,V> hd = null, tl = null;
for (Node<K,V> q = this; q != null; q = q.next) {
Node<K,V> p = map.replacementNode(q, null);
if (tl == null)
hd = p;
else
tl.next = p;
tl = p;
}
return hd;
}

/**
* Tree version of putVal.
*/
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
TreeNode<K,V> root = (parent != null) ? root() : this;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}

TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}

/**
* Removes the given node, that must be present before this call.
* This is messier than typical red-black deletion code because we
* cannot swap the contents of an interior node with a leaf
* successor that is pinned by "next" pointers that are accessible
* independently during traversal. So instead we swap the tree
* linkages. If the current tree appears to have too few nodes,
* the bin is converted back to a plain bin. (The test triggers
* somewhere between 2 and 6 nodes, depending on tree structure).
* 删除给定节点必须在此调用之前。
* 这比典型的红黑树删除代码更为混乱,因为我们不能将内部节点的内容与叶继承者交换,叶继承者是由在遍历期间可独立访问的“下一个”指针固定的。
* 因此,我们交换树链接。如果当前树的节点似乎太少,则将树箱转换回普通箱。 (该测试触发在2到6个节点之间的某个位置,具体取决于树的结构)。
*/
final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
boolean movable) {
int n;
if (tab == null || (n = tab.length) == 0)
return;
int index = (n - 1) & hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
if (pred == null)
tab[index] = first = succ;
else
pred.next = succ;
if (succ != null)
succ.prev = pred;
if (first == null)
return;
if (root.parent != null)
root = root.root();
if (root == null || root.right == null ||
(rl = root.left) == null || rl.left == null) {
tab[index] = first.untreeify(map); // too small
return;
}
TreeNode<K,V> p = this, pl = left, pr = right, replacement;
if (pl != null && pr != null) {
TreeNode<K,V> s = pr, sl;
while ((sl = s.left) != null) // find successor | 查找继任者
s = sl;
boolean c = s.red; s.red = p.red; p.red = c; // swap colors | 交换颜色
TreeNode<K,V> sr = s.right;
TreeNode<K,V> pp = p.parent;
if (s == pr) { // p was s's direct parent | p是s的直接父级
p.parent = s;
s.right = p;
}
else {
TreeNode<K,V> sp = s.parent;
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
if ((p.right = sr) != null)
sr.parent = p;
if ((s.left = pl) != null)
pl.parent = s;
if ((s.parent = pp) == null)
root = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
if (sr != null)
replacement = sr;
else
replacement = p;
}
else if (pl != null)
replacement = pl;
else if (pr != null)
replacement = pr;
else
replacement = p;
if (replacement != p) {
TreeNode<K,V> pp = replacement.parent = p.parent;
if (pp == null)
root = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
}

TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);

if (replacement == p) { // detach | 分离
TreeNode<K,V> pp = p.parent;
p.parent = null;
if (pp != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
}
}
if (movable)
moveRootToFront(tab, r);
}

/**
* Splits nodes in a tree bin into lower and upper tree bins,
* or untreeifies if now too small. Called only from resize;
* see above discussion about split bits and indices.
* 将树箱中的节点拆分为较高和较低的树箱,如果现在太小,则取消树化。仅被resize调用;
* 请参阅上面有关拆分位和索引的讨论。
*
* @param map the map
* @param tab the table for recording bin heads
* @param index the index of the table being split
* @param bit the bit of hash to split on
*/
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
TreeNode<K,V> b = this;
// Relink into lo and hi lists, preserving order | 重新链接到lo和hi列表,保留顺序
TreeNode<K,V> loHead = null, loTail = null;
TreeNode<K,V> hiHead = null, hiTail = null;
int lc = 0, hc = 0;
for (TreeNode<K,V> e = b, next; e != null; e = next) {
next = (TreeNode<K,V>)e.next;
e.next = null;
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}

if (loHead != null) {
if (lc <= UNTREEIFY_THRESHOLD)
tab[index] = loHead.untreeify(map);
else {
tab[index] = loHead;
if (hiHead != null) // (else is already treeified) | 其他已经被树化了
loHead.treeify(tab);
}
}
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}

/* ------------------------------------------------------------ */
// Red-black tree methods, all adapted from CLR | 红黑树方法,全部改编自CLR

static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> r, pp, rl;
if (p != null && (r = p.right) != null) {
if ((rl = p.right = r.left) != null)
rl.parent = p;
if ((pp = r.parent = p.parent) == null)
(root = r).red = false;
else if (pp.left == p)
pp.left = r;
else
pp.right = r;
r.left = p;
p.parent = r;
}
return root;
}

static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> l, pp, lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
}

static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {
x.red = true;
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (!xp.red || (xpp = xp.parent) == null)
return root;
if (xp == (xppl = xpp.left)) {
if ((xppr = xpp.right) != null && xppr.red) {
xppr.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.right) {
root = rotateLeft(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
}
else {
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
}

static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
TreeNode<K,V> x) {
for (TreeNode<K,V> xp, xpl, xpr;;) {
if (x == null || x == root)
return root;
else if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (x.red) {
x.red = false;
return root;
}
else if ((xpl = xp.left) == x) {
if ((xpr = xp.right) != null && xpr.red) {
xpr.red = false;
xp.red = true;
root = rotateLeft(root, xp);
xpr = (xp = x.parent) == null ? null : xp.right;
}
if (xpr == null)
x = xp;
else {
TreeNode<K,V> sl = xpr.left, sr = xpr.right;
if ((sr == null || !sr.red) &&
(sl == null || !sl.red)) {
xpr.red = true;
x = xp;
}
else {
if (sr == null || !sr.red) {
if (sl != null)
sl.red = false;
xpr.red = true;
root = rotateRight(root, xpr);
xpr = (xp = x.parent) == null ?
null : xp.right;
}
if (xpr != null) {
xpr.red = (xp == null) ? false : xp.red;
if ((sr = xpr.right) != null)
sr.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateLeft(root, xp);
}
x = root;
}
}
}
else { // symmetric | 对称的
if (xpl != null && xpl.red) {
xpl.red = false;
xp.red = true;
root = rotateRight(root, xp);
xpl = (xp = x.parent) == null ? null : xp.left;
}
if (xpl == null)
x = xp;
else {
TreeNode<K,V> sl = xpl.left, sr = xpl.right;
if ((sl == null || !sl.red) &&
(sr == null || !sr.red)) {
xpl.red = true;
x = xp;
}
else {
if (sl == null || !sl.red) {
if (sr != null)
sr.red = false;
xpl.red = true;
root = rotateLeft(root, xpl);
xpl = (xp = x.parent) == null ?
null : xp.left;
}
if (xpl != null) {
xpl.red = (xp == null) ? false : xp.red;
if ((sl = xpl.left) != null)
sl.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateRight(root, xp);
}
x = root;
}
}
}
}
}

/**
* Recursive invariant check
* 递归不变检查
*/
static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
tb = t.prev, tn = (TreeNode<K,V>)t.next;
if (tb != null && tb.next != t)
return false;
if (tn != null && tn.prev != t)
return false;
if (tp != null && t != tp.left && t != tp.right)
return false;
if (tl != null && (tl.parent != t || tl.hash > t.hash))
return false;
if (tr != null && (tr.parent != t || tr.hash < t.hash))
return false;
if (t.red && tl != null && tl.red && tr != null && tr.red)
return false;
if (tl != null && !checkInvariants(tl))
return false;
if (tr != null && !checkInvariants(tr))
return false;
return true;
}
}
作者

hellosyl

发布于

2020-10-15

更新于

2020-10-23

许可协议

# 相关文章
  1.HashMap 源码翻译
评论

:D 一言句子获取中...

加载中,最新评论有1分钟缓存...